Spatial variation and sources of polycyclic aromatic hydrocarbons influenced by intensive land use in an urbanized river network of East China

Sci Total Environ. 2018 Jun 15:627:671-680. doi: 10.1016/j.scitotenv.2018.01.272. Epub 2018 Feb 2.

Abstract

The concentrations and distribution of polycyclic aromatic hydrocarbons (PAHs) in urbanized river networks are strongly influenced by intensive land use, industrial activities and population density. The spatial variations and their influencing factors of 16 priority PAHs were investigated in surface water, suspended particulate matter (SPM) and sediments among areas under different intensive land uses (industrial areas, agricultural areas, inner city, suburban towns and island areas) in the Shanghai river network, East China. Source apportionment was carried out using isomer ratios of PAHs and Positive Matrix Factorization (PMF). Total concentrations of 16 PAHs ranged from 105.2 to 400.5 ng/L, 108.1 to 1058.8 ng/L and 104.4 to 19,480.0 ng/g in water, SPM and sediments, respectively. The concentrations of PAHs in SPM and sediments varied significantly among areas (p < 0.05), with the highest concentrations in inner city characterized by highly intensive land use and high population density. The PAH concentrations in sediments were positively correlated with those in SPM and were more strongly correlated with black carbon than with total organic carbon, indicating a stronger influence of prolonged anthropogenic contamination than the recent surface input in sediments. Biomass and coal combustion contributed strongly to total PAHs, followed by natural gas combustion in water and SPM, and vehicular emissions in sediments. Vehicular emissions were the strongest contributors in SPM and sediments of the inner city, indicating the strong influence of vehicular transportation to PAHs pollution in the urbanized river network.

Keywords: Anthropogenic input; Distribution; Influence factor; PMF; Partitioning.