Electrochemical investigation of the Eu3+/2+ redox couple in complexes with variable numbers of glycinamide and acetate pendant arms

Eur J Inorg Chem. 2017 Nov 24;2017(43):5001-5005. doi: 10.1002/ejic.201701070. Epub 2017 Nov 21.

Abstract

The Eu3+/2+ redox couple provides a convenient design platform for responsive pO2 sensors for magnetic resonance imaging (MRI). Specifically the Eu2+ ion provides T1w contrast enhancement under hypoxic conditions in tissues, whereas, under normoxia, the Eu3+ ion can produce contrast from chemical exchange saturation transfer in MRI. The oxidative stability of the Eu3+/2+ redox couple for a series of tetraaza macrocyclic complexes was investigated in this work using cyclic voltammetry. A series of Eu-containing cyclen-based macrocyclic complexes revealed positive shifts in the Eu3+/2+ redox potentials with each replacement of a carboxylate coordinating arm of the ligand scaffold with glycinamide pendant arms. The data obtained reveal that the complex containing four glycinamide coordinating pendant arms has the highest oxidative stability of the series investigated.

Keywords: Divalent lanthanide; Redox chemistry of lanthanides; cyclic voltammetry lanthanides; hypoxia imaging agents.