Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate

ACS Nano. 2018 Mar 27;12(3):2373-2380. doi: 10.1021/acsnano.7b07653. Epub 2018 Feb 9.

Abstract

GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical band gap. However, developing a precise, scalable, and cost-effective fabrication method with a high degree of controllability to obtain high-aspect-ratio nanowires with high optical properties and minimum crystal defects remains a challenge. Here, we present a scalable two-step top-down approach using interferometric lithography, for which parameters can be controlled precisely to achieve highly ordered arrays of nanowires with excellent quality and desired aspect ratios. The wet-etch mechanism is investigated, and the etch rates of m-planes {11̅00} (sidewalls) were measured to be 2.5 to 70 nm/h depending on the Si doping concentration. Using this method, uniform nanowire arrays were achieved over a large area (>105 μm2) with an spect ratio as large as 50, a radius as small as 17 nm, and atomic-scale sidewall roughness (<1 nm). FDTD modeling demonstrated HE11 is the dominant transverse mode in the nanowires with a radius of sub-100 nm, and single-mode lasing from vertical cavity nanowire arrays with different doping concentrations on a sapphire substrate was interestingly observed in photoluminescence measurements. High Q-factors of ∼1139-2443 were obtained in nanowire array lasers with a radius and length of 65 nm and 2 μm, respectively, corresponding to a line width of 0.32-0.15 nm (minimum threshold of 3.31 MW/cm2). Our results show that fabrication of high-quality GaN nanowire arrays with adaptable aspect ratio and large-area uniformity is feasible through a top-down approach using interferometric lithography and is promising for fabrication of III-nitride-based nanophotonic devices (radial/axial) on the original substrate.

Keywords: GaN nanowires; highly ordered nanowires; interferometric lithography (IL); nanowire laser arrays; single-mode laser; top-down approach.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.