Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography

Appl Opt. 2018 Jan 20;57(3):507-513. doi: 10.1364/AO.57.000507.

Abstract

Surface relief gratings and refractive index gratings are formed by direct holographic recording in amorphous chalcogenide nanomultilayer structures As2S3-Se and thin films As2S3. The evolution of the grating parameters, such as the modulation of refractive index and relief depth in dependence of the holographic exposure, is investigated. Off-axis digital holographic microscopy is applied for the measurement of the photoinduced phase gratings. For the high-accuracy reconstruction of the wavefront (amplitude and phase) transmitted by the fabricated gratings, we used a computational technique based on the sparse modeling of phase and amplitude. Both topography and refractive index maps of recorded gratings are revealed. Their separated contribution in diffraction efficiency is estimated.