Oxidative enzymes activity during abiotic and biotic stresses in Zea mays leaves and roots exposed to Cu, methyl jasmonate and Trigonotylus caelestialium

Physiol Mol Biol Plants. 2018 Feb;24(1):1-5. doi: 10.1007/s12298-017-0479-y. Epub 2017 Oct 25.

Abstract

The activities of antioxidative enzymes, i.e. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX), in the leaves and roots of Zea mays L. plants exposed to abiotic (methyl jasmonate, MJ, or/and copper, Cu) and biotic (Trigonotylus caelestialium) factors were examined. The contribution of MJ as a signal molecule in the defense mechanism against abiotic and biotic stresses was studied. All plants were cultivated hydroponically and divided into three groups: not treated by abiotic factors (control), treated by MJ only (MJ) and by MJ and Cu (MJ + Cu) and in each group half of the plants were exposed to T. caelestialium attack. The enzymatic activities of SOD, CAT, APX, and GPX in the leaves were higher in the insect-treated than non-insect-treated control plants, but lower in both MJ + Cu- or MJ- and insect-treated plants. In the roots, the enzyme activities were elevated in all insect-treated plants with the highest rise in MJ + Cu, in comparison with the MJ-treated plants. The results showed that MJ and MJ + Cu were efficient in reducing the activity of the antioxidative enzymes in the leaves under the insect influence by elevating enzyme activity in the roots.

Keywords: Catalase; Insect; Maize; Methyl jasmonate; Peroxidase; Superoxide dismutase.