Directed Self-Assembly of Asymmetric Block Copolymers in Thin Films Driven by Uniaxially Aligned Topographic Patterns

ACS Nano. 2018 Feb 27;12(2):1642-1649. doi: 10.1021/acsnano.7b08226. Epub 2018 Feb 6.

Abstract

We present a simple, versatile approach to generate highly ordered nanostructures of block copolymers (BCPs) using rubbed surfaces. A block of poly(tetrafluoroethylene) (PTFE) was dragged across a flat substrate surface above the melting point of PTFE transferring a highly aligned PTFE topographic pattern to the substrate. Si wafer, glass, and polyimide films were used as substrates. Thin films of cylinder-forming asymmetric polystyrene-block-poly(2-vinylpyridine) copolymers (S2VPs) were solvent annealed on the surfaces having the transferred surface pattern to induce their directed self-assembly. Cylinders of P2VP oriented normal to the surface are markedly aligned along the rubbing direction and used as templates to generate extremely uniform arrays of various metallic nanoparticles of gold, silver, and platinum over a large area.

Keywords: block copolymer; directed self-assembly; solvent-annealing; thin films; topographic patterns.

Publication types

  • Research Support, Non-U.S. Gov't