Sexual Dimorphism and the Origins of Human Spinal Health

Endocr Rev. 2018 Apr 1;39(2):221-239. doi: 10.1210/er.2017-00147.

Abstract

Recent observations indicate that the cross-sectional area (CSA) of vertebral bodies is on average 10% smaller in healthy newborn girls than in newborn boys, a striking difference that increases during infancy and puberty and is greatest by the time of sexual and skeletal maturity. The smaller CSA of female vertebrae is associated with greater spinal flexibility and could represent the human adaptation to fetal load in bipedal posture. Unfortunately, it also imparts a mechanical disadvantage that increases stress within the vertebrae for all physical activities. This review summarizes the potential endocrine, genetic, and environmental determinants of vertebral cross-sectional growth and current knowledge of the association between the small female vertebrae and greater risk for a broad array of spinal conditions across the lifespan.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Adolescent
  • Adult
  • Child
  • Child, Preschool
  • Female
  • Humans
  • Infant
  • Infant, Newborn
  • Male
  • Sex Characteristics*
  • Spinal Diseases / pathology*
  • Spine / anatomy & histology*
  • Spine / growth & development