Total Synthesis of Astellatol

Angew Chem Int Ed Engl. 2018 Mar 19;57(13):3386-3390. doi: 10.1002/anie.201800167. Epub 2018 Feb 15.

Abstract

A nearly-30-year-old unanswered synthetic puzzle, astellatol, has been solved in an enantiospecific manner. The highly congested pentacyclic skeleton of this rare sesterterpenoid, which possesses a unique bicyclo[4.1.1]octane motif, ten stereocenters, a cyclobutane that contains two quaternary centers, an exo-methylene group, and a sterically encumbered isopropyl trans-hydrindane motif, makes astellatol arguably one of the most challenging targets for sesterterpenoid synthesis. An intramolecular Pauson-Khand reaction was exploited to construct the right-hand side scaffold of this sesterterpenoid. An unprecedented reductive radical 1,6-addition, mediated by SmI2 , forged the cyclobutane motif. Last, a strategic oxidation/reduction step provided not only the decisive solution for the remarkably challenging late-stage transformations, but also a highly valuable unravelling of the notorious issue of trans-hydrindane synthesis. Importantly, the synthesis of astellatol showcases a rapid, scalable strategy to access diverse complex isopropyl trans-hydrindane sesterterpenoids.

Keywords: cyclizations; natural products; sesterterpenoids; structure elucidation; total synthesis.

Publication types

  • Research Support, Non-U.S. Gov't