Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets

Biosci Rep. 2018 Feb 21;38(1):BSR20171160. doi: 10.1042/BSR20171160. Print 2018 Feb 28.

Abstract

MicroRNAs (miRNAs) have important roles in many cellular processes, including cell proliferation, growth and development, and disease control. Previous study demonstrated that the expression of two highly homologous miRNAs (miR-192 and miR-215) was up-regulated in weaned piglets with Escherichia coli F18 infection. However, the potential molecular mechanism of miR-192 in regulating E. coli infection remains unclear in pigs. In the present study, we analyzed the relationship between level of miR-192 and degree of E. coli resistance using transcription activator-like effector nuclease (TALEN), in vitro bacterial adhesion assays, and target genes research. A TALEN expression vector that specifically recognizes the pig miR-192 was constructed and then monoclonal epithelial cells defective in miR-192 were established. We found that miR-192 knockout led to enhance the adhesion ability of the E. coli strains F18ab, F18ac and K88ac, meanwhile increase the expression of target genes (DLG5 and ALCAM) by qPCR and Western blotting analysis. The results suggested that miR-192 and its key target genes (DLG5 and ALCAM) could have a key role in E. coli infection. Based on our findings, we propose that further investigation of miR-192 function is likely to lead to insights into the molecular mechanisms of E. coli infection.

Keywords: Escherichia coli; TALEN; intestinal epithelial cell line; miRNA; swine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Activated-Leukocyte Cell Adhesion Molecule / genetics
  • Activated-Leukocyte Cell Adhesion Molecule / metabolism
  • Animals
  • Bacterial Adhesion / genetics*
  • Cell Line
  • Duodenum / metabolism
  • Duodenum / microbiology
  • Escherichia coli / genetics*
  • Escherichia coli Infections / microbiology*
  • Escherichia coli Infections / veterinary*
  • Gene Knockout Techniques
  • Humans
  • Mice
  • MicroRNAs / chemistry
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • Models, Animal
  • Puromycin / administration & dosage
  • Rats
  • Swine
  • Swine Diseases / microbiology*
  • Transcription Activator-Like Effector Nucleases / genetics
  • Transcription Activator-Like Effector Nucleases / metabolism

Substances

  • Activated-Leukocyte Cell Adhesion Molecule
  • MicroRNAs
  • Puromycin
  • Transcription Activator-Like Effector Nucleases