Kinetic Ising models with various single-spin-flip dynamics on quenched and annealed random regular graphs

Phys Rev E. 2017 Jul;96(1-1):012132. doi: 10.1103/PhysRevE.96.012132. Epub 2017 Jul 17.

Abstract

We investigate a kinetic Ising model with several single-spin-flip dynamics (including Metropolis and heat bath) on quenched and annealed random regular graphs. As expected, on the quenched structures all proposed algorithms reproduce the same results since the conditions for the detailed balance and the Boltzmann distribution in an equilibrium are satisfied. However, on the annealed graphs the situation is far less clear-the network annealing disturbs the equilibrium moving the system away from it. Consequently, distinct dynamics lead to different steady states. We show that some algorithms are more resistant to the annealed disorder, which causes only small quantitative changes in the model behavior. On the other hand, there are dynamics for which the influence of annealing on the system is significant, and qualitative changes arise like switching the type of phase transition from a continuous to a discontinuous one. We try to identify features of the proposed dynamics which are responsible for the above phenomenon.