Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2 Nanostructures

ACS Nano. 2018 Feb 27;12(2):954-964. doi: 10.1021/acsnano.7b06691. Epub 2018 Jan 23.

Abstract

Two-dimensional (2D) nanomaterials have been intensively investigated due to their interesting properties and range of potential applications. Although most research has focused on graphene, atomic layered transition metal dichalcogenides (TMDs) and particularly MoS2 have gathered much deserved attention recently. Here, we report the induction of chirality into 2D chiral nanomaterials by carrying out liquid exfoliation of MoS2 in the presence of chiral ligands (cysteine and penicillamine) in water. This processing resulted in exfoliated chiral 2D MoS2 nanosheets showing strong circular dichroism signals, which were far past the onset of the original chiral ligand signals. Using theoretical modeling, we demonstrated that the chiral nature of MoS2 nanosheets is related to the presence of chiral ligands causing preferential folding of the MoS2 sheets. There was an excellent match between the theoretically calculated and experimental spectra. We believe that, due to their high aspect ratio planar morphology, chiral 2D nanomaterials could offer great opportunities for the development of chiroptical sensors, materials, and devices for valleytronics and other potential applications. In addition, chirality plays a key role in many chemical and biological systems, with chiral molecules and materials critical for the further development of biopharmaceuticals and fine chemicals, and this research therefore should have a strong impact on relevant areas of science and technology such as nanobiotechnology, nanomedicine, and nanotoxicology.

Keywords: 2D nanomaterials; MoS2; amino acids; chiral; folding; optically active.

Publication types

  • Research Support, Non-U.S. Gov't