Traits determining the digestibility-decomposability relationships in species from Mediterranean rangelands

Ann Bot. 2018 Mar 5;121(3):459-469. doi: 10.1093/aob/mcx175.

Abstract

Background and aims: Forage quality for herbivores and litter quality for decomposers are two key plant properties affecting ecosystem carbon and nutrient cycling. Although there is a positive relationship between palatability and decomposition, very few studies have focused on larger vertebrate herbivores while considering links between the digestibility of living leaves and stems and the decomposability of litter and associated traits. The hypothesis tested is that some defences of living organs would reduce their digestibility and, as a consequence, their litter decomposability, through 'afterlife' effects. Additionally in high-fertility conditions the presence of intense herbivory would select for communities dominated by fast-growing plants, which are able to compensate for tissue loss by herbivory, producing both highly digestible organs and easily decomposable litter.

Methods: Relationships between dry matter digestibility and decomposability were quantified in 16 dominant species from Mediterranean rangelands, which are subject to management regimes that differ in grazing intensity and fertilization. The digestibility and decomposability of leaves and stems were estimated at peak standing biomass, in plots that were either fertilized and intensively grazed or unfertilized and moderately grazed. Several traits were measured on living and senesced organs: fibre content, dry matter content and nitrogen, phosphorus and tannin concentrations.

Key results: Digestibility was positively related to decomposability, both properties being influenced in the same direction by management regime, organ and growth forms. Digestibility of leaves and stems was negatively related to their fibre concentrations, and positively related to their nitrogen concentration. Decomposability was more strongly related to traits measured on living organs than on litter. Digestibility and decomposition were governed by similar structural traits, in particular fibre concentration, affecting both herbivores and micro-organisms through the afterlife effects.

Conclusions: This study contributes to a better understanding of the interspecific relationships between forage quality and litter decomposition in leaves and stems and demonstrates the key role these traits play in the link between plant and soil via herbivory and decomposition. Fibre concentration and dry matter content can be considered as good predictors of both digestibility and decomposability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomass
  • Ecosystem*
  • Herbivory*
  • Mediterranean Region
  • Nitrogen / analysis
  • Phosphorus / analysis
  • Plant Leaves* / chemistry
  • Plant Stems* / chemistry
  • Plants / chemistry
  • Tannins / analysis

Substances

  • Tannins
  • Phosphorus
  • Nitrogen