Atomic-Layer-Deposition of Indium Oxide Nano-films for Thin-Film Transistors

Nanoscale Res Lett. 2018 Jan 9;13(1):4. doi: 10.1186/s11671-017-2414-0.

Abstract

Atomic-layer-deposition (ALD) of In2O3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H2O2) as precursors. The In2O3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (Eg) of the deposited film rises from 3.42 to 3.75 eV. In addition, with the increase of deposition temperature, the atomic ratio of In to O in the as-deposited film gradually shifts towards that in the stoichiometric In2O3, and the carbon content also reduces by degrees. For 200 °C deposition temperature, the deposited film exhibits an In:O ratio of 1:1.36 and no carbon incorporation. Further, high-performance In2O3 thin-film transistors with an Al2O3 gate dielectric were achieved by post-annealing in air at 300 °C for appropriate time, demonstrating a field-effect mobility of 7.8 cm2/V⋅s, a subthreshold swing of 0.32 V/dec, and an on/off current ratio of 107. This was ascribed to passivation of oxygen vacancies in the device channel.

Keywords: Atomic layer deposition; In2O3; Low deposition temperature; Thin-film transistors.