A Scalable Synthesis Pathway to Nanoporous Metal Structures

ACS Nano. 2018 Jan 23;12(1):432-440. doi: 10.1021/acsnano.7b06667. Epub 2018 Jan 11.

Abstract

A variety of nanoporous transition metals, Fe, Co, Au, Cu, and others, have been readily formed by a scalable, room-temperature synthesis process. Metal halide compounds are reacted with organolithium reductants in a nonpolar solvent to form metal/lithium halide nanocomposites. The lithium halide is then dissolved out of the nanocomposite with a common organic solvent, leaving behind a continuous, three-dimensional network of metal filaments that form a nanoporous structure. This approach is applicable to both noble metals (Cu, Au, Ag) and less-noble transition metals (Co, Fe, Ni). The microstructures of these nanoporous transition metals are tunable, as controlling the formation of the metal structure in the nanocomposite dictates the final metal structure. Microscopy studies and nitrogen adsorption analysis show these materials form pores ranging from 2 to 50 nm with specific surface areas from 1.0 m2/g to 160 m2/g. Our analysis also shows that pore size, pore volume, and filament size of the nanoporous metal networks depend on the mobility of target metal and the amount of lithium halide produced by the conversion reaction. Further, it has been demonstrated that hybrid nanoporous structures of two or more metals could be synthesized by performing the same process on mixtures of precursor compounds. Metals (e.g., Co and Cu) have been found to stabilize each other in nanoporous forms, resulting in smaller pore sizes and higher surface areas than each element in their pure forms. This scalable and versatile synthesis pathway greatly expands our access to additional compositions and microstructures of nanoporous metals.

Keywords: lithium conversion reactions; nanocomposites; nanopores; nanoporous metals; three-dimensional nanostructures; transition metals.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.