Optical-Electrical-Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells

ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3902-3911. doi: 10.1021/acsami.7b19053. Epub 2018 Jan 17.

Abstract

In PIN-type perovskite solar cells (PSCs), the hydroscopicity and acidity of the poly(3,4-ethylenedioxythiophene)-poly(styrene-sulfonate) (PEDOT:PSS) hole transport layer (HTL) have critical influences on the device stability. To eliminate these problems, Nafion, the hydrophobic perfluorosulfonic copolymer, is incorporated into PEDOT:PSS by a simple spin-coating process. For the modified film, Nafion/PSSH (poly(styrene sulfonate) acid) acts as an electron-blocking layer on the surface and the PEDOT-rich domain tends to gather into larger particles with better interchain charge transfer inside the film. Consequently, the modified PEDOT:PSS HTL shows enhanced conductivity and light transmittance as well as more favorable work function, ending up with the increased short-circuit current density (Jsc) and open-circuit voltage (Voc) of the device. Finally, PSCs with Nafion-modified HTLs achieve the best power conversion efficiency of 16.72%, with 23.76% improvement compared with PEDOT:PSS-only devices (13.51%). Most importantly, the device stability is obviously enhanced because of the hydrophobicity and chemical and mechanical stability of the Nafion polymer that is enriched on the surface of the PEDOT:PSS film.

Keywords: Nafion-modified PEDOT:PSS; hydrophobic film; long-term stability; optical−electrical−chemical properties; perovskite solar cells.