Repeat-induced point (RIP) mutation in the industrial workhorse fungus Trichoderma reesei

Appl Microbiol Biotechnol. 2018 Feb;102(4):1567-1574. doi: 10.1007/s00253-017-8731-5. Epub 2018 Jan 8.

Abstract

Trichoderma reesei (syn. Hypocrea jecorina) is a filamentous ascomycete. Due to its capability of producing large amounts of lignocellulolytic enzymes and various heterologous proteins, this fungus has been widely used for industrial applications for over 70 years. It is also a model organism for lignocellulosic biomass degradation and metabolic engineering. Recently, we experimentally and computationally demonstrated that Trichoderma reesei exhibits high homology pairing and repeat-induced point (RIP) mutation activities at a premeiotic stage, i.e., between fertilization and karyogamy or premeiotic DNA replication. The discovery of RIP in Trichoderma reesei not only reveals significant impacts of sexual reproduction on evolution and chromosome architecture but also provides intriguing perspectives for industrial strain improvement. This review emphasizes two major points about RIP and RIP-like processes in Pezizomycotina fungi. First, the molecular mechanisms of RIP and RIP-like processes in Trichoderma reesei and other Pezizomycotina fungi are apparently distinct from those originally described in the model fungus Neurospora crassa. Second, orthologs of the rid1 (deficient in RIP-1) DNA methyltransferase gene were shown to be essential for sexual development in at least four Pezizomycotina fungi, including Trichoderma reesei. In contrast, rid1 is dispensable for Neurospora crassa sexual development. We suggest that the rid1-like gene products and/or their DNA methyltransferase activities play critical roles in promoting fungal sexual development. The Neurospora crassa rid1 gene might have lost this evolutionarily conserved function.

Keywords: DNA methyltransferase; Epigenetics; Gene silencing; Meiosis; Neurospora; Repeat-induced point mutation; Sexual development; Trichoderma.

Publication types

  • Review

MeSH terms

  • DNA Modification Methylases / genetics
  • DNA Modification Methylases / metabolism
  • Homologous Recombination
  • Meiosis
  • Point Mutation*
  • Repetitive Sequences, Nucleic Acid*
  • Trichoderma / genetics*
  • Trichoderma / growth & development

Substances

  • DNA Modification Methylases