Electric-Field-Guided Precision Manipulation of Catalytic Nanomotors for Cargo Delivery and Powering Nanoelectromechanical Devices

ACS Nano. 2018 Feb 27;12(2):1179-1187. doi: 10.1021/acsnano.7b06824. Epub 2018 Jan 16.

Abstract

We report a controllable and precision approach in manipulating catalytic nanomotors by strategically applied electric (E-) fields in three dimensions (3-D). With the high controllability, the catalytic nanomotors have demonstrated versatility in capturing, delivering, and releasing of cargos to designated locations as well as in situ integration with nanomechanical devices (NEMS) to chemically power the actuation. With combined AC and DC E-fields, catalytic nanomotors can be accurately aligned by the AC E-fields and effectively change their speeds instantly by the DC E-fields. Within the 3-D orthogonal microelectrode sets, the in-plane transport of catalytic nanomotors can be swiftly turned on and off, and these catalytic nanomotors can also move in the vertical direction. The interplaying nanoforces that govern the propulsion and alignment are investigated. The modeling of catalytic nanomotors proposed in previous works has been confirmed quantitatively here. Finally, the prowess of the precision manipulation of catalytic nanomotors by E-fields is demonstrated in two applications: the capture, transport, and release of cargos to prepatterned microdocks, and the assembly of catalytic nanomotors on NEMS to power the continuous rotation. The concepts and approaches reported in this work could further advance applications of catalytic nanomotors, e.g., for assembling and powering nanomachines, nanorobots, and complex NEMS devices.

Keywords: NEMS; cargo delivery; catalytic nanomotors; electric tweezers; nanomotors; nanorobotics; rotary NEMS.

Publication types

  • Research Support, Non-U.S. Gov't