Experimental Column Setup for Studying Anaerobic Biogeochemical Interactions Between Iron (Oxy)Hydroxides, Trace Elements, and Bacteria

J Vis Exp. 2017 Dec 19:(130):56240. doi: 10.3791/56240.

Abstract

Fate and speciation of trace elements (TEs), such as arsenic (As) and mercury (Hg), in aquifers are closely related to physio-chemical conditions, such as redox potential (Eh) and pH, but also to microbial activities that can play a direct or indirect role on speciation and/or mobility. Indeed, some bacteria can directly oxidize As(III) to As(V) or reduce As(V) to As(III). Likewise, bacteria are strongly involved in Hg cycling, either through its methylation, forming the neurotoxin monomethyl mercury, or through its reduction to elemental Hg°. The fates of both As and Hg are also strongly linked to soil or aquifer composition; indeed, As and Hg can bind to organic compounds or (oxy)hydroxides, which will influence their mobility. In turn, bacterial activities such as iron (oxy)hydroxide reduction or organic matter mineralization can indirectly influence As and Hg sequestration. The presence of sulfate/sulfide can also strongly impact these particular elements through the formation of complexes such as thio-arsenates with As or metacinnabar with Hg. Consequently, many important questions have been raised on the fate and speciation of As and Hg in the environment and how to limit their toxicity. However, due to their reactivity towards aquifer components, it is difficult to clearly dissociate the biogeochemical processes that occur and their different impacts on the fate of these TE. To do so, we developed an original, experimental, column setup that mimics an aquifer with As- or Hg-iron-oxide rich areas versus iron depleted areas, enabling a better understanding of TE biogeochemistry in anoxic conditions. The following protocol gives step by step instructions for the column set-up either for As or Hg, as well as an example with As under iron and sulfate reducing conditions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Hydroxides / chemistry*
  • Iron / chemistry*
  • Trace Elements / chemistry*

Substances

  • Hydroxides
  • Trace Elements
  • hydroxide ion
  • Iron