Determinants, analysis and interpretation of the muscle compound action potential (M wave) in humans: implications for the study of muscle fatigue

Eur J Appl Physiol. 2018 Mar;118(3):501-521. doi: 10.1007/s00421-017-3788-5. Epub 2017 Dec 28.

Abstract

The compound muscle action potential (M wave) has been commonly used to assess the peripheral properties of the neuromuscular system. More specifically, changes in the M-wave features are used to examine alterations in neuromuscular propagation that can occur during fatiguing contractions. The utility of the M wave is based on the assumption that impaired neuromuscular propagation results in a decrease in M-wave size. However, there remains controversy on whether the size of the M wave is increased or decreased during and/or after high-intensity exercise. The controversy partly arises from the fact that previous authors have considered the M wave as a whole, i.e., without analyzing separately its first and second phases. However, in a series of studies we have demonstrated that the first and second phases of the M wave behave in a different manner during and after fatiguing contractions. The present review is aimed at five main objectives: (1) to describe the mechanistic factors that determine the M-wave shape; (2) to analyze the various factors influencing M-wave properties; (3) to emphasize the need to analyze separately the first and second M-wave phases to adequately identify and interpret changes in muscle fiber membrane properties; (4) to advance the hypothesis that it is an increase (and not a decrease) of the M-wave first phase which reflects impaired sarcolemmal membrane excitability; and (5) to revisit the involvement of impaired sarcolemmal membrane excitability in the reduction of the force generating capacity.

Keywords: Compound muscle action potential; Conduction velocity; End-of-fiber signals; Quadriceps; Sarcolemmal membrane excitability; Surface electromyography; Transcutaneous electrical stimulation.

Publication types

  • Review

MeSH terms

  • Action Potentials*
  • Evoked Potentials, Motor*
  • Humans
  • Muscle Fatigue*
  • Muscle, Skeletal / physiology*