Variation in Splicing Efficiency Underlies Morphological Evolution in Capsella

Dev Cell. 2018 Jan 22;44(2):192-203.e5. doi: 10.1016/j.devcel.2017.11.022. Epub 2017 Dec 21.

Abstract

Understanding the molecular basis of morphological change remains a central challenge in evolutionary-developmental biology. The transition from outbreeding to selfing is often associated with a dramatic reduction in reproductive structures and functions, such as the loss of attractive pheromones in hermaphroditic Caenorhabditis elegans and a reduced flower size in plants. Here, we demonstrate that variation in the level of the brassinosteroid-biosynthesis enzyme CYP724A1 contributes to the reduced flower size of selfing Capsella rubella compared with its outbreeding ancestor Capsella grandiflora. The primary transcript of the C. rubella allele is spliced more efficiently than that of C. grandiflora, resulting in higher brassinosteroid levels. These restrict organ growth by limiting cell proliferation. More efficient splicing of the C. rubella allele results from two de novo mutations in the selfing lineage. Thus, our results highlight the potentially widespread importance of differential splicing efficiency and higher-than-optimal hormone levels in generating phenotypic variation.

Keywords: Capsella; brassinosteroids; evolution of development; exonic splicing signals; organ growth; organ size; selfing syndrome; shepherd's purse; splicing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Brassinosteroids / biosynthesis
  • Capsella / anatomy & histology
  • Capsella / genetics*
  • Capsella / growth & development
  • Chromosomes, Plant
  • Cytochrome P-450 Enzyme System / biosynthesis
  • Cytochrome P-450 Enzyme System / genetics*
  • Evolution, Molecular*
  • Exons
  • Flowers / anatomy & histology
  • Flowers / genetics*
  • Flowers / growth & development
  • Mutation
  • Polymorphism, Single Nucleotide
  • Quantitative Trait Loci
  • RNA Splicing*

Substances

  • Brassinosteroids
  • Cytochrome P-450 Enzyme System