Targeting tumor-associated carbohydrate antigens: a phase I study of a carbohydrate mimetic-peptide vaccine in stage IV breast cancer subjects

Oncotarget. 2017 Oct 23;8(58):99161-99178. doi: 10.18632/oncotarget.21959. eCollection 2017 Nov 17.

Abstract

Tumor-associated carbohydrate antigens (TACAs) support cell survival that could be interrupted by anti-TACA antibodies. Among TACAs that mediate cell survival signals are the neolactoseries antigen Lewis Y (LeY) and the ganglioside GD2. To induce sustained immunity against both LeY and GD2, we developed a carbohydrate mimicking peptide (CMP) as a surrogate pan-immunogen that mimics both. This CMP, referred to as P10s, is the N-terminal half of a peptide vaccine named P10s-PADRE, the C-terminal half of which (PADRE) is a Pan-T-cell epitope. A Phase I dose-escalation trial of P10s-PADRE plus adjuvant MONTANIDE™ ISA 51 VG was conducted in subjects with metastatic breast cancer to test 300 and 500 μg/injection in two cohorts of 3 subjects each. Doses of the P10s-PADRE vaccine were administered to research participants subcutaneously on weeks 1, 2, 3, 7 and 19. Antibody responses to P10s, GD2, and LeY were measured by ELISA. The P10s-PADRE vaccine induced antibodies specifically reactive with P10s, LeY and GD2 in all 6 subjects. Serum antibodies displayed Caspase-3-dependent apoptotic functionality against LeY or GD2 expressing breast cancer cell lines. Immunization with the P10s-PADRE vaccine was well-tolerated and induced functional antibodies, and the data suggest potential clinical benefit.

Keywords: breast cancer; cancer vaccine; clinical trial; peptide mimotopes; tumor-associated carbohydrate antigens.