Construction of highly efficient and stable ternary AgBr/Ag/PbBiO2Br Z-scheme photocatalyst under visible light irradiation: Performance and mechanism insight

J Colloid Interface Sci. 2018 Mar 1:513:852-865. doi: 10.1016/j.jcis.2017.12.010. Epub 2017 Dec 5.

Abstract

In this work, the novel ternary AgBr/Ag/PbBiO2Br Z-scheme photocatalysts were synthesized via a CTAB-assisted calcination process. The AgBr/Ag/PbBiO2Br composites were employed for the degradation of rhodamine B (RhB) and antibiotic bisphenol A (BPA) under visible light irradiation. Results showed that the obtained AgBr/Ag-3/PbBiO2Br displayed optimal photocatalytic performance, which could remove almost all RhB within 25 min and effectively decompose 82.3% of BPA in 120 min. Three-dimensional excitation-emission matrix fluorescence spectra (3D EEMs) were utilized for the purposes of fully grasping the behaviors of RhB molecules during the reaction process. Meanwhile, the effects of initial RhB concentration and co-existent electrolytes were investigated from the viewpoint of practical application. In addition, there was no obvious loss in degradation efficiency even after four cycles. The enhanced photocatalytic performances of AgBr/Ag/PbBiO2Br could be credited to the accelerated interfacial charge transfer process and the improved separation of the photogenerated electron-hole pairs. The existence of a small amount of metallic Ag played a significant role in preventing AgBr from being further photocorroded, resulting in the formation of a stable Z-scheme photocatalyst system. This study demonstrated that using metallic Ag as an electron mediator to construct Z-scheme photocatalytic system provided a feasible strategy in promoting the stability of Ag-based semiconductors.

Keywords: AgBr/Ag/PbBiO(2)Br; Photocatalytic; Stability; Z-scheme.