Enhancement of the depth-of-field of integral imaging microscope by using switchable bifocal liquid-crystalline polymer micro lens array

Opt Express. 2017 Nov 27;25(24):30503-30512. doi: 10.1364/OE.25.030503.

Abstract

An integral imaging microscopy (IIM) system with improved depth-of-field (DoF) using a custom-designed bifocal polarization-dependent liquid-crystalline polymer micro lens array (LCP-MLA) is proposed. The implemented MLA has improved electro-optical properties such as a small focal ratio, high fill factor, low driving voltage, and fast switching speed, utilizing a well-aligned reactive mesogen on the imprinted reverse shape of the lens and a polarization switching layer. A bifocal MLA switches its focal length according to the polarization angle and acquires different DoF information of the specimen. After two elemental image arrays are captured, the depth-slices are reconstructed and combined to provide a widened DoF. The fabricated bifocal MLA consists of two identical polarization-dependent LCP-MLAs with 1.6 mm and f/16 focal ratio. Our experimental results confirmed that the proposed system improves the DoF of IIM without the need for mechanical manipulation.