Graphitizing Non-graphitizable Carbons by Stress-induced Routes

Sci Rep. 2017 Nov 29;7(1):16551. doi: 10.1038/s41598-017-16424-z.

Abstract

Graphitic carbons' unique attributes have attracted worldwide interest towards their development and application. Carbon pyrolysis is a widespread method for synthesizing carbon materials. However, our understanding of the factors that cause differences in graphitization of various pyrolyzed carbon precursors is inadequate. We demonstrate how electro-mechanical aspects of the synthesis process influence molecular alignment in a polymer precursor to enhance its graphitization. Electrohydrodynamic forces are applied via electrospinning to unwind and orient the molecular chains of a non-graphitizing carbon precursor, polyacrylonitrile. Subsequently, exerting mechanical stresses further enhances the molecular alignment of the polymer chains during the formative crosslinking phase. The stabilized polymer precursor is then pyrolyzed at 1000 °C and characterized to evaluate its graphitization. The final carbon exhibits a uniformly graphitized structure, abundant in edge planes, which translates into its electrochemical kinetics. The results highlight the significance of physical synthesis conditions in defining the structure and properties of pyrolytic carbons.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't