Crafting of functional biomaterials by directed molecular self-assembly of triple helical peptide building blocks

Interface Focus. 2017 Dec 6;7(6):20160138. doi: 10.1098/rsfs.2016.0138. Epub 2017 Oct 20.

Abstract

Collagen is the most abundant extracellular matrix protein in the body and has widespread use in biomedical research, as well as in clinics. In addition to difficulties in the production of recombinant collagen due to its high non-natural imino acid content, animal-derived collagen imposes several major drawbacks-variability in composition, immunogenicity, pathogenicity and difficulty in sequence modification-that may limit its use in the practical scenario. However, in recent years, scientists have shifted their attention towards developing synthetic collagen-like materials from simple collagen model triple helical peptides to eliminate the potential drawbacks. For this purpose, it is highly desirable to develop programmable self-assembling strategies that will initiate the hierarchical self-assembly of short peptides into large-scale macromolecular assemblies with recommendable bioactivity. Herein, we tried to elaborate our understanding related to the strategies that have been adopted by few research groups to trigger self-assembly in the triple helical peptide system producing fascinating supramolecular structures. We have also touched upon the major epitopes within collagen that can be incorporated into collagen mimetic peptides for promoting bioactivity.

Keywords: collagen; hierarchical self-assembly; supramolecular structures; synthetic collagen; triple helical peptides.

Publication types

  • Review