Variability in Toxin Profiles of the Mediterranean Ostreopsis cf. ovata and in Structural Features of the Produced Ovatoxins

Environ Sci Technol. 2017 Dec 5;51(23):13920-13928. doi: 10.1021/acs.est.7b03827. Epub 2017 Nov 22.

Abstract

Fifty-five strains of Ostreopsis were collected in the Mediterranean Sea and analyzed to characterize their toxin profiles. All the strains were grown in culture under the same experimental conditions and identified by molecular PCR assay based on the ITS-5.8S rDNA. A liquid chromatography-high resolution multiple stage mass spectrometry (LC-HRMSn) approach was used to analyze toxin profiles and to structurally characterize the detected toxins. Despite morphological and molecular characterization being consistent within the species O. cf. ovata, a certain degree of toxin variability was observed. All the strains produced ovatoxins (OVTXs), with the exception of only one strain. Toxin profiles were quite different from both qualitative and quantitative standpoints: 67% of the strains contained OVTX-a to -e, OVTX-g, and isobaric PLTX, in 25% of them only OVTX-a, -d, -e and isobaric PLTX were present, while 4% produced only OVTX-b and -c. None of the strains showed a previously identified profile, featuring OVTX-f as dominant toxin, whereas OVTX-f was a minor component of very few strains. Toxin content was mostly in the range 4-70 pg/cell with higher levels (up to 238 pg/cell) being found in strains from the Ligurian and South Adriatic Sea. Structural insights into OVTX-b, -c, -d, and -e were gained, and the new OVTX-l was detected in 36 strains.

MeSH terms

  • Chromatography, Liquid
  • Dinoflagellida*
  • Marine Toxins*
  • Mediterranean Sea
  • Tandem Mass Spectrometry

Substances

  • Marine Toxins