Improved back-projection method for circular-scanning-based photoacoustic tomography with improved tangential resolution

Appl Opt. 2017 Nov 10;56(32):8983-8990. doi: 10.1364/AO.56.008983.

Abstract

While photoacoustic computed tomography (PACT) is generally built with planar transducers of finite size, most current reconstruction algorithms assume the transducer to be an ideal point, which leads to a spinning blur in the consequently obtained PACT images due to the model mismatch. In this work, we put forward an improved back-projection method that factors in the geometry of the transducers to improve the tangential resolution for the reconstruction of 2D circular-scanning-based photoacoustic tomography. Extensive simulations and experiments were carried out to study the adaptability and stability of the proposed method. Results show that this method can effectively restore the tangential distortion of the PACT image for both simulated and experimental data. Results indicated that the improvement of the tangential resolution is more obvious for transducers with larger size. We also demonstrated the application of this method to transducers other than planar, and results show that the reconstructed image quality can be significantly affected by the shape and position of the transducers used. This study may help to guide the selection of transducer and design of scanning strategy in PACT.