MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome

Nucleic Acids Res. 2018 Jan 4;46(D1):D281-D287. doi: 10.1093/nar/gkx1080.

Abstract

Methyltranscriptome is an exciting new area that studies the mechanisms and functions of methylation in transcripts. A knowledge base with the systematic collection and curation of context specific transcriptome-wide methylations is critical for elucidating their biological functions as well as for developing bioinformatics tools. Since its inception in 2014, the Met-DB (Liu, H., Flores, M.A., Meng, J., Zhang, L., Zhao, X., Rao, M.K., Chen, Y. and Huang, Y. (2015) MeT-DB: a database of transcriptome methylation in mammalian cells. Nucleic Acids Res., 43, D197-D203), has become an important resource for methyltranscriptome, especially in the N6-methyl-adenosine (m6A) research community. Here, we report Met-DB v2.0, the significantly improved second version of Met-DB, which is entirely redesigned to focus more on elucidating context-specific m6A functions. Met-DB v2.0 has a major increase in context-specific m6A peaks and single-base sites predicted from 185 samples for 7 species from 26 independent studies. Moreover, it is also integrated with a new database for targets of m6A readers, erasers and writers and expanded with more collections of functional data. The redesigned Met-DB v2.0 web interface and genome browser provide more friendly, powerful, and informative ways to query and visualize the data. More importantly, MeT-DB v2.0 offers for the first time a series of tools specifically designed for understanding m6A functions. Met-DB V2.0 will be a valuable resource for m6A methyltranscriptome research. The Met-DB V2.0 database is available at http://compgenomics.utsa.edu/MeTDB/ and http://www.xjtlu.edu.cn/metdb2.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine / analogs & derivatives*
  • Adenosine / metabolism
  • Animals
  • Databases, Genetic*
  • Humans
  • Methylation
  • Mice
  • MicroRNAs / metabolism
  • RNA / metabolism*
  • RNA, Messenger / metabolism
  • RNA-Binding Proteins / metabolism
  • Transcriptome*

Substances

  • MicroRNAs
  • RNA, Messenger
  • RNA-Binding Proteins
  • RNA
  • N-methyladenosine
  • Adenosine