Cyanide-Assembled d10 Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid-State Luminescence

Chemistry. 2018 Jan 26;24(6):1404-1415. doi: 10.1002/chem.201704642. Epub 2017 Dec 18.

Abstract

The series of cyanide-bridged coordination polymers [(P2 )CuCN]n (1), [(P2 )Cu{M(CN)2 }]n (M=Cu 3, Ag 4, Au 5) and molecular tetrametallic clusters [{(P4 )MM'(CN)}2 ]2+ (MM'=Cu2 6, Ag2 7, AgCu 8, AuCu 9, AuAg 10) were obtained using the bidentate P2 and tetradentate P4 phosphane ligands (P2 =1,2-bis(diphenylphosphino)benzene; P4 =tris(2-diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig-zag chain arrangement for 1 and 3-5, whereas 6-10 possess metallocyclic frameworks with different degree of metal-metal bonding. The d10 -d10 interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of 1-10 were investigated in the solid state and supported by theoretical analysis. The emission of compounds 1 and 3-5, dominated by metal-to-ligand charge transfer (MLCT) transitions located within {CuP2 } motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the T1 and S1 excited states. The luminescence characteristics of 6-10 are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484-650 nm with quantum efficiency reaching 0.56 (6). The origin of the emission for 6-8 and 10 at room temperature is assigned to delayed fluorescence. AuCu cluster 9, however, exhibits only phosphorescence that corresponds to theoretically predicted large value ΔE(S1 -T1 ). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state.

Keywords: Group 11 elements; cyanides; heterometallic complexes; luminescence; phosphane ligands.