Mechanism of myocardial ischemia/reperfusion-induced acute kidney injury through DJ-1/Nrf2 pathway in diabetic rats

Exp Ther Med. 2017 Nov;14(5):4201-4207. doi: 10.3892/etm.2017.5095. Epub 2017 Sep 1.

Abstract

The objective of the present study was to investigate acute kidney injury (AKI) induced by myocardial ischemia/reperfusion (MIR) in diabetic rats and elucidate its underlying mechanism. A rat model of MIR was established by left anterior descending coronary artery occlusion for 30 min, followed by reperfusion for 2 h. Rats were randomly divided into four groups: i) Sham group, ii) sham + MIR group, iii) diabetic group and iv) diabetes + MIR group. Myocardial injury was detected by plasma creatine kinase isoenzyme MB and lactate dehydrogenase assays. AKI induced by MIR in diabetic rats was characterized by increases in cystatin C and β2-microglobulin levels. Oxidative stress injury was accompanied by an increase of malondialdehyde levels and a decrease of total antioxidative capacity in the renal tissues. Immunohistochemistry and western blot analysis demonstrated that the expression of DJ-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) were significantly increased in the diabetes + MIR group compared with that in the sham + MIR and diabetic groups. Taken together, these results suggested that AKI induced by MIR in diabetic rats may be associated with activation of the DJ-1/Nrf2 pathway.

Keywords: DJ-1; acute kidney injury; diabetes; myocardial ischemia-reperfusion; nuclear factor erythroid 2-related factor-2.