A novel mtDNA repair fusion protein attenuates maladaptive remodeling and preserves cardiac function in heart failure

Am J Physiol Heart Circ Physiol. 2018 Feb 1;314(2):H311-H321. doi: 10.1152/ajpheart.00515.2017. Epub 2017 Nov 3.

Abstract

Oxidative stress results in mtDNA damage and contributes to myocardial cell death. mtDNA repair enzymes are crucial for mtDNA repair and cell survival. We investigated a novel, mitochondria-targeted fusion protein (Exscien1-III) containing endonuclease III in myocardial ischemia-reperfusion injury and transverse aortic constriction (TAC)-induced heart failure. Male C57/BL6J mice (10-12 wk) were subjected to 45 min of myocardial ischemia and either 24 h or 4 wk of reperfusion. Exscien1-III (4 mg/kg ip) or vehicle was administered at the time of reperfusion. Male C57/BL6J mice were subjected to TAC, and Exscien1-III (4 mg/kg i.p) or vehicle was administered daily starting at 3 wk post-TAC and continued for 12 wk. Echocardiography was performed to assess left ventricular (LV) structure and function. Exscien1-III reduced myocardial infarct size ( P < 0.01) at 24 h of reperfusion and preserved LV ejection fraction at 4 wk postmyocardial ischemia. Exscien1-III attenuated TAC-induced LV dilation and dysfunction at 6-12 wk post-TAC ( P < 0.05). Exscien1-III reduced ( P < 0.05) cardiac hypertrophy and maladaptive remodeling after TAC. Assessment of cardiac mitochondria showed that Exscien1-III localized to mitochondria and increased mitochondrial antioxidant and reduced apoptotic markers. In conclusion, our results indicate that administration of Exscien1-III provides significant protection against myocardial ischemia and preserves myocardial structure and LV performance in the setting of heart failure. NEW & NOTEWORTHY Oxidative stress-induced mitochondrial DNA damage is a prominent feature in the pathogenesis of cardiovascular diseases. In the present study, we demonstrate the efficacy of a novel, mitochondria-targeted fusion protein that traffics endonuclease III specifically for mitochondrial DNA repair in two well-characterized murine models of cardiac injury and failure.

Keywords: DNA repair; hypertrophic cardiomyopathy; mitochondria-targeted peptide; mitochondrial injury; myocardial infarction.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Apoptosis Regulatory Proteins / metabolism
  • Cardiovascular Agents / pharmacology*
  • DNA Damage / drug effects*
  • DNA, Mitochondrial / drug effects*
  • DNA, Mitochondrial / genetics
  • DNA, Mitochondrial / metabolism
  • Disease Models, Animal
  • Fibrosis
  • Heart Failure / drug therapy*
  • Heart Failure / metabolism
  • Heart Failure / pathology
  • Heart Failure / physiopathology
  • Hypertrophy, Left Ventricular / drug therapy*
  • Hypertrophy, Left Ventricular / metabolism
  • Hypertrophy, Left Ventricular / pathology
  • Hypertrophy, Left Ventricular / physiopathology
  • Male
  • Mice, Inbred C57BL
  • Mitochondria, Heart / drug effects
  • Mitochondria, Heart / metabolism
  • Mitochondria, Heart / pathology
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology
  • Oxidative Stress / drug effects
  • Recombinant Fusion Proteins / pharmacology
  • Signal Transduction / drug effects
  • Stroke Volume / drug effects
  • Ventricular Dysfunction, Left / drug therapy*
  • Ventricular Dysfunction, Left / metabolism
  • Ventricular Dysfunction, Left / pathology
  • Ventricular Dysfunction, Left / physiopathology
  • Ventricular Function, Left / drug effects*
  • Ventricular Remodeling / drug effects*

Substances

  • Apoptosis Regulatory Proteins
  • Cardiovascular Agents
  • DNA, Mitochondrial
  • Recombinant Fusion Proteins