How convincing is a matching Y-chromosome profile?

PLoS Genet. 2017 Nov 3;13(11):e1007028. doi: 10.1371/journal.pgen.1007028. eCollection 2017 Nov.

Abstract

The introduction of forensic autosomal DNA profiles was controversial, but the problems were successfully addressed, and DNA profiling has gone on to revolutionise forensic science. Y-chromosome profiles are valuable when there is a mixture of male-source and female-source DNA, and interest centres on the identity of the male source(s) of the DNA. The problem of evaluating evidential weight is even more challenging for Y profiles than for autosomal profiles. Numerous approaches have been proposed, but they fail to deal adequately with the fact that men with matching Y-profiles are related in extended patrilineal clans, many of which may not be represented in available databases. The higher mutation rates of modern profiling kits have led to increased discriminatory power but they have also exacerbated the problem of fairly conveying evidential value. Because the relevant population is difficult to define, yet the number of matching relatives is fixed as population size varies, it is typically infeasible to derive population-based match probabilities relevant to a specific crime. We propose a conceptually simple solution, based on a simulation model and software to approximate the distribution of the number of males with a matching Y profile. We show that this distribution is robust to different values for the variance in reproductive success and the population growth rate. We also use importance sampling reweighting to derive the distribution of the number of matching males conditional on a database frequency, finding that this conditioning typically has only a modest impact. We illustrate the use of our approach to quantify the value of Y profile evidence for a court in a way that is both scientifically valid and easily comprehensible by a judge or juror.

MeSH terms

  • Chromosomes, Human, Y / genetics*
  • DNA / genetics*
  • DNA Fingerprinting / methods
  • Forensic Genetics / methods
  • Humans
  • Male
  • Probability
  • Reproduction
  • Software

Substances

  • DNA

Grants and funding

The authors wish to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge UK, for support and hospitality during the programme Probability and Statistics in Forensic Science, where this paper was conceived. The programme was supported by EPSRC grant no EP/K032208/1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.