Tipping the Scales: Spectroscopic Tools for Intermolecular Energy Balances

J Phys Chem Lett. 2017 Nov 16;8(22):5656-5665. doi: 10.1021/acs.jpclett.7b02337. Epub 2017 Nov 8.

Abstract

Intermolecular energy balances are supramolecular complexes with a nearly degenerate bistable docking structure and low barriers in between, which can be tuned by chemical substitution to prefer one or the other site. The docking preference can be probed by forming the complexes in a supersonic jet expansion and by measuring their spectroscopic signature. Linear spectroscopies are shown to be well suited for this purpose, in particular when they are assisted by more sensitive techniques and by approximate computed photon interaction cross sections. Molecular analogues of conventional beam balances, seesaw balances, and torsional balances are discussed, all based on noncovalent interactions. The discrimination of energy differences down to the sub-kJ/mol level is demonstrated. The correspondence to intramolecular torsional balances in NMR spectroscopy is outlined. Besides highlighting conformational preferences, the results of intermolecular balance experiments can serve as critical benchmarks for an accurate description of intermolecular forces and zero-point vibrational energies.