A Major Step in Opening the Black Box of High-Molecular-Weight Dissolved Organic Nitrogen by Isotopic Labeling of Synechococcus and Multibond Two-Dimensional NMR

Anal Chem. 2017 Nov 21;89(22):11990-11998. doi: 10.1021/acs.analchem.7b02335. Epub 2017 Oct 30.

Abstract

Dissolved organic nitrogen (DON) comprises the largest pool of fixed N in the surface ocean, yet its composition has remained poorly constrained. Knowledge of the chemical composition of this nitrogen pool is crucial for understanding its biogeochemical function and reactivity in the environment. Previous work has suggested that high-molecular-weight (high-MW) DON exists only in two closely related forms, the secondary amides of peptides and of N-acetylated hexose sugars. Here, we demonstrate that the chemical structures of high-MW DON may be much more diverse than previously thought. We couple isotopic labeling of cyanobacterially derived dissolved organic matter with advanced two-dimensional NMR spectroscopy to open the "black box" of uncharacterized high-MW DON. Using multibond NMR correlations, we have identified novel N-methyl-containing amines and amides, primary amides, and novel N-acetylated sugars, which together account for nearly 50% of cyanobacterially derived high-MW DON. This study reveals unprecedented compositional details of the previously uncharacterized DON pool and outlines the means to further advance our understanding of this biogeochemically and globally important reservoir of organic nitrogen.