Identification of the principal transcriptional regulators for low-fat and high-fat meal responsive genes in small intestine

Nutr Metab (Lond). 2017 Oct 23:14:66. doi: 10.1186/s12986-017-0221-3. eCollection 2017.

Abstract

Background: High-fat (HF) diet is a well-known cause of obesity. To identify principle transcriptional regulators that could be therapeutic targets of obesity, we investigated transcriptomic modulation in the duodenal mucosa following low-fat (LF) and HF meal ingestion.

Methods: Whereas one group of mice was sacrificed after fasting, the others were fed ad libitum with LF or HF meal, and sacrificed 30 min, 1 h and 3 h after the beginning of the meal. A transcriptome analysis of the duodenal mucosa of the 7 groups was conducted using both microarray and serial analysis of gene expression (SAGE) method followed by an Ingenuity Pathways Analysis (IPA).

Results: SAGE and microarray showed that the modulation of a total of 896 transcripts in the duodenal mucosa after LF and/or HF meal, compared to the fasting condition. The IPA identified lipid metabolism, molecular transport, and small molecule biochemistry as top three molecular and cellular functions for the HF-responsive, HF-specific, HF-delay, and LF-HF different genes. Moreover, the top transcriptional regulator for the HF-responsive and HF-specific genes was peroxisome proliferator-activated receptor alpha (PPARα). On the other hand, the LF-responsive and LF-specific genes were related to carbohydrate metabolism, cellular function and maintenance, and cell death/cellular growth and proliferation, and the top transcriptional regulators were forkhead box protein O1 (FOXO1) and cAMP response element binding protein 1 (CREB1), respectively.

Conclusions: These results will help to understand the molecular mechanisms of intestinal response after LF and HF ingestions, and contribute to identify therapeutic targets for obesity and obesity-related diseases.

Keywords: Duodenum; High-fat diet; Low-fat diet; Microarray; Mucosa; Serial analysis of gene expression.