Musashi-2, a novel oncoprotein promoting cervical cancer cell growth and invasion, is negatively regulated by p53-induced miR-143 and miR-107 activation

J Exp Clin Cancer Res. 2017 Oct 26;36(1):150. doi: 10.1186/s13046-017-0617-y.

Abstract

Background: Although previous studies have shown promise for targeting Musashi RNA-binding protein 2 (MSI-2) in diverse tumors, the role and mechanism of MSI-2 for cervical cancer (CC) progression and the regulation of MSI-2 expression remains unclear.

Methods: Using gene expression and bioinformatic analysis, together with gain- and loss-of-function assays, we identified MSI-2 as a novel oncogenic driver and a poor prognostic marker in CC. We explored the regulation of c-FOS by MSI-2 via RNA-immunoprecipitation and luciferase assay, and confirmed a direct inhibition of MSI-2 by miR-143/miR-107 using luciferase assay. We assessed the effect of a natural antibiotic Mithramycin A on p53, miR-143/miR-107 and MSI-2 expression in CC cells.

Results: MSI-2 mRNA is highly expressed in CC tissues and its overexpression correlates with lower overall survival. MSI-2 promotes CC cell growth, invasiveness and sphere formation through directly binding to c-FOS mRNA and by increasing c-FOS protein expression. Furthermore, miR-143/miR-107 are two tumor suppressor miRNAs that directly bind and inhibit MSI-2 expression in CC cells, and downregulation of miR-143/miR-107 associates with poor patient prognosis. Importantly, we found that p53 decreases the expression of MSI-2 through elevating miR-143/miR-107 levels, and treatment with a natural antibiotic Mithramycin A increased p53 and miR-143/miR-107 expression and reduced MSI-2 expression, resulting in the inhibition of CC cell proliferation, invasion and sphere formation.

Conclusions: These results suggest that MSI-2 plays a crucial role in promoting the aggressive phenotypes of CC cells, and restoration of miR-143/miR-107 by Mithramycin A via activation of p53 may represent a novel therapeutic approach for CC.

Keywords: Anti-tumor antibiotic; C-FOS; Cervical cancer; Metastasis; Mithramycin a; Musashi-2; microRNA-107; microRNA-143; p53.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Disease Progression
  • Female
  • Gene Expression Regulation, Neoplastic
  • HeLa Cells
  • Humans
  • MicroRNAs / genetics*
  • Neoplasm Invasiveness
  • Prognosis
  • Proto-Oncogene Proteins c-fos / genetics*
  • Proto-Oncogene Proteins c-fos / metabolism
  • RNA-Binding Proteins / genetics*
  • RNA-Binding Proteins / metabolism
  • Tumor Suppressor Protein p53 / genetics*
  • Tumor Suppressor Protein p53 / metabolism
  • Up-Regulation*
  • Uterine Cervical Neoplasms / genetics*
  • Uterine Cervical Neoplasms / metabolism

Substances

  • MIRN107 microRNA, human
  • MIRN143 microRNA, human
  • MSI2 protein, human
  • MicroRNAs
  • Proto-Oncogene Proteins c-fos
  • RNA-Binding Proteins
  • TP53 protein, human
  • Tumor Suppressor Protein p53