Surface Acoustic Wave (SAW)-Enhanced Chemical Functionalization of Gold Films

Sensors (Basel). 2017 Oct 26;17(11):2452. doi: 10.3390/s17112452.

Abstract

Surface chemical and biochemical functionalization is a fundamental process that is widely applied in many fields to add new functions, features, or capabilities to a material's surface. Here, we demonstrate that surface acoustic waves (SAWs) can enhance the chemical functionalization of gold films. This is shown by using an integrated biochip composed by a microfluidic channel coupled to a surface plasmon resonance (SPR) readout system and by monitoring the adhesion of biotin-thiol on the gold SPR areas in different conditions. In the case of SAW-induced streaming, the functionalization efficiency is improved ≈ 5 times with respect to the case without SAWs. The technology here proposed can be easily applied to a wide variety of biological systems (e.g., proteins, nucleic acids) and devices (e.g., sensors, devices for cell cultures).

Keywords: functionalization; microfluidics; surface acoustic waves (SAWs).