Reaction Coordinate Leading to H2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory

J Am Chem Soc. 2017 Nov 22;139(46):16894-16902. doi: 10.1021/jacs.7b09751. Epub 2017 Nov 9.

Abstract

[FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (Hhyd) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that Hhyd is the catalytic state one step prior to H2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H2 bond formation by [FeFe]-hydrogenases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biocatalysis
  • Catalytic Domain
  • Chlamydomonas reinhardtii / enzymology
  • Desulfovibrio desulfuricans / enzymology
  • Hydrogen / metabolism*
  • Hydrogenase / metabolism*
  • Iron / metabolism*
  • Models, Molecular
  • Quantum Theory*
  • Spectrum Analysis
  • Vibration

Substances

  • Hydrogen
  • Iron
  • Hydrogenase