Genetic Support for a Causal Role of Insulin Resistance on Circulating Branched-Chain Amino Acids and Inflammation

Diabetes Care. 2017 Dec;40(12):1779-1786. doi: 10.2337/dc17-1642. Epub 2017 Oct 18.

Abstract

Objective: Insulin resistance has deleterious effects on cardiometabolic disease. We used Mendelian randomization analyses to clarify the causal relationships of insulin resistance (IR) on circulating blood-based metabolites to shed light on potential mediators of the IR to cardiometabolic disease relationship.

Research design and methods: We used 53 single nucleotide polymorphisms associated with IR from a recent genome-wide association study (GWAS) to explore their effects on circulating lipids and metabolites. We used published summary-level data from two GWASs of European individuals; data on the exposure (IR) were obtained from meta-GWASs of 188,577 individuals, and data on the outcomes (58 metabolic measures assessed by nuclear magnetic resonance) were taken from a GWAS of 24,925 individuals.

Results: One-SD genetically elevated IR (equivalent to 55% higher geometric mean of fasting insulin, 0.89 mmol/L higher triglycerides, and 0.46 mmol/L lower HDL cholesterol) was associated with higher concentrations of all branched-chain amino acids (BCAAs)-isoleucine (0.56 SD; 95% CI 0.43, 0.70), leucine (0.42 SD; 95% CI 0.28, 0.55), and valine (0.26 SD; 95% CI 0.12, 0.39)-as well as with higher glycoprotein acetyls (an inflammation marker) (0.47 SD; 95% CI 0.32, 0.62) (P < 0.0003 for each). Results were broadly consistent when using multiple sensitivity analyses to account for potential genetic pleiotropy.

Conclusions: We provide robust evidence that IR causally affects each individual BCAA and inflammation. Taken together with existing studies, this implies that BCAA metabolism lies on a causal pathway from adiposity and IR to type 2 diabetes.

MeSH terms

  • Adiposity
  • Amino Acids, Branched-Chain / blood*
  • Biomarkers / blood
  • Diabetes Mellitus, Type 2 / blood*
  • Diabetes Mellitus, Type 2 / genetics
  • Female
  • Genome-Wide Association Study
  • Humans
  • Inflammation / blood
  • Inflammation / genetics
  • Insulin / metabolism
  • Insulin Resistance / genetics*
  • Mendelian Randomization Analysis
  • Polymorphism, Single Nucleotide
  • White People

Substances

  • Amino Acids, Branched-Chain
  • Biomarkers
  • Insulin