Thermalization of one-dimensional photon gas and thermal lasers in erbium-doped fibers

Opt Express. 2017 Aug 7;25(16):18963-18973. doi: 10.1364/OE.25.018963.

Abstract

We demonstrate thermalization and Bose-Einstein (BE) distribution of photons in standard erbium-doped fibers (edf) in a broad spectral range up to ~200nm at the 1550nm wavelength regime. Our measurements were done at a room temperature ~300K and 77K. It is a special demonstration of thermalization of photons in fiber cavities and even in open fibers. They are one-dimensional (1D), meters-long, with low finesse, high loss and small capture fraction of the spontaneous emission. Moreover, we find in the edf cavities coexistence of thermal-equilibrium (TE) and thermal lasing without an overall inversion (T-LWI). The experimental results are supported by a theoretical analysis based on the rate equations.