Wavefronts, caustic, and intensity of a plane wave refracted by an arbitrary surface: the axicon and the plano spherical lenses

J Opt Soc Am A Opt Image Sci Vis. 2017 Sep 1;34(9):1670-1678. doi: 10.1364/JOSAA.34.001670.

Abstract

The aim of the present work is to obtain an integral representation of the field associated with the refraction of a plane wave by an arbitrary surface. To this end, in the first part we consider two optical media with refraction indexes n1 and n2 separated by an arbitrary interface, and we show that the optical path length, ϕ, associated with the evolution of the plane wave is a complete integral of the eikonal equation in the optical medium with refraction index n2. Then by using the k function procedure introduced by Stavroudis, we define a new complete integral, S, of the eikonal equation. We remark that both complete integrals in general do not provide the same information; however, they give the geometrical wavefronts, light rays, and the caustic associated with the refraction of the plane wave. In the second part, using the Fresnel-Kirchhoff diffraction formula and the complete integral, S, we obtain an integral representation for the field associated only with the refraction phenomena, the geometric field approximation, in terms of secondary plane waves and the k-function introduced by Stavroudis in solving the problem from the geometrical optics point of view. We use the general results to compute: the wavefronts, light rays, caustic, and the intensity associated with the refraction of a plane wave by an axicon and plano-spherical lenses.