A study of ribonuclease activity in venom of vietnam cobra

J Anim Sci Technol. 2017 Sep 25:59:20. doi: 10.1186/s40781-017-0145-5. eCollection 2017.

Abstract

Background: Ribonuclease (RNase) is one of the few toxic proteins that are present constantly in snake venoms of all types. However, to date this RNase is still poorly studied in comparison not only with other toxic proteins of snake venom, but also with the enzymes of RNase group. The objective of this paper was to investigate some properties of RNase from venom of Vietnam cobra Naja atra.

Methods: Kinetic methods and gel filtration chromatography were used to investigate RNase from venom of Vietnam cobra.

Results: RNase from venom of Vietnam cobra Naja atra has some characteristic properties. This RNase is a thermostable enzyme and has high conformational stability. This is the only acidic enzyme of the RNase A superfamily exhibiting a high catalytic activity in the pH range of 1-4, with pHopt = 2.58 ± 0.35. Its activity is considerably reduced with increasing ionic strength of reaction mixture. Venom proteins are separated by gel filtration into four peaks with ribonucleolytic activity, which is abnormally distributed among the isoforms: only a small part of the RNase activity is present in fractions of proteins with molecular weights of 12-15 kDa and more than 30 kDa, but most of the enzyme activity is detected in fractions of polypeptides, having molecular weights of less than 9 kDa, that is unexpected.

Conclusions: RNase from the venom of Vietnam cobra is a unique member of RNase A superfamily according to its acidic optimum pH (pHopt = 2.58 ± 0.35) and extremely low molecular weights of its major isoforms (approximately 8.95 kDa for RNase III and 5.93 kDa for RNase IV).

Keywords: Acidic optimum pH; Conformational stability; Gel filtration; Ionic strength; Isoforms; Thermostability; Venom RNase; Vietnam cobra.