A new role for human dyskerin in vesicular trafficking

FEBS Open Bio. 2017 Sep 12;7(10):1453-1468. doi: 10.1002/2211-5463.12307. eCollection 2017 Oct.

Abstract

Dyskerin is an essential, conserved, multifunctional protein found in the nucleolus, whose loss of function causes the rare genetic diseases X-linked dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. To further investigate the wide range of dyskerin's biological roles, we set up stable cell lines able to trigger inducible protein knockdown and allow a detailed analysis of the cascade of events occurring within a short time frame. We report that dyskerin depletion quickly induces cytoskeleton remodeling and significant alterations in endocytic Ras-related protein Rab-5A/Rab11 trafficking. These effects arise in different cell lines well before the onset of telomere shortening, which is widely considered the main cause of dyskerin-related diseases. Given that vesicular trafficking affects many homeostatic and differentiative processes, these findings add novel insights into the molecular mechanisms underlining the pleiotropic manifestation of the dyskerin loss-of-function phenotype.

Keywords: DKC1; Rab5/Rab11 endosomes; cytoskeletal remodeling.