Activation pattern of ACE2/Ang-(1-7) and ACE/Ang II pathway in course of heart failure assessed by multiparametric MRI in vivo in Tgαq*44 mice

J Appl Physiol (1985). 2018 Jan 1;124(1):52-65. doi: 10.1152/japplphysiol.00571.2017. Epub 2017 Sep 28.

Abstract

Here, we analyzed systemic (plasma) and local (heart/aorta) changes in ACE/ACE-2 balance in Tgαq*44 mice in course of heart failure (HF). Tgαq*44 mice with cardiomyocyte-specific Gαq overexpression and late onset of HF were analyzed at different age for angiotensin pattern in plasma, heart, and aorta using liquid chromatography/mass spectrometry, for progression of HF by in vivo magnetic resonance imaging under isoflurane anesthesia, and for physical activity by voluntary wheel running. Six-month-old Tgαq*44 mice displayed decreased ventricle radial strains and impaired left atrial function. At 8-10 mo, Tgαq*44 mice showed impaired systolic performance and reduced voluntary wheel running but exhibited preserved inotropic reserve. At 12 mo, Tgαq*44 mice demonstrated a severe impairment of basal cardiac performance and modestly compromised inotropic reserve with reduced voluntary wheel running. Angiotensin analysis in plasma revealed an increase in concentration of angiotensin-(1-7) in 6- to 10-mo-old Tgαq*44 mice. However, in 12- to 14-mo-old Tgαq*44 mice, increased angiotensin II was noted with a concomitant increase in Ang III, Ang IV, angiotensin A, and angiotensin-(1-10). The pattern of changes in the heart and aorta was also compatible with activation of ACE2, followed by activation of the ACE pathway. In conclusion, mice with cardiomyocyte Gαq protein overexpression develop HF that is associated with activation of the systemic and the local ACE/Ang II pathway. However, it is counterbalanced by a prominent ACE2/Ang-(1-7) activation, possibly allowing to delay decompensation. NEW & NOTEWORTHY Changes in ACE/ACE-2 balance were analyzed based on measurements of a panel of nine angiotensins in plasma, heart, and aorta of Tgαq*44 mice in relation to progression of heart failure (HF) characterized by multiparametric MRI and exercise performance. The early stage of HF was associated with upregulation of the ACE2/angiotensin-(1-7) pathway, whereas the end-stage HF was associated with downregulation of ACE2/angiotensin-(1-7) and upregulation of the ACE/Ang II pathway. ACE/ACE-2 balance seems to determine the decompensation of HF in this model.

Keywords: MRI; Tgαq*44 mice; heart failure; systemic and local renin-angiotensin system alterations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin-Converting Enzyme 2
  • Angiotensins / metabolism*
  • Animals
  • Cardiac Imaging Techniques
  • Disease Progression
  • Female
  • Heart Failure / diagnostic imaging
  • Heart Failure / metabolism*
  • Magnetic Resonance Imaging
  • Mice
  • Motor Activity
  • Peptidyl-Dipeptidase A / metabolism*

Substances

  • Angiotensins
  • ACE protein, human
  • Peptidyl-Dipeptidase A
  • ACE2 protein, human
  • Ace2 protein, mouse
  • Angiotensin-Converting Enzyme 2