Performance comparisons of frequency-difference and conventional beamforming

J Acoust Soc Am. 2017 Sep;142(3):1663. doi: 10.1121/1.5003787.

Abstract

Frequency-difference beamforming [Abadi, Song, and Dowling (2012b). J. Acoust. Soc. Am. 132, 3018-3029] is an unconventional beamforming method for use with sparse receiver arrays. It involves beamforming a quadratic product of complex field amplitudes, P(ω2)P*1), at the difference frequency, ω21, instead of beamforming the complex field amplitude P(ω) at frequencies ω within the signal bandwidth. Frequency-difference beamforming is readily implemented with ordinary transducer array recordings of non-zero bandwidth signals. Results for, and comparisons of, frequency-difference beamforming from simulations and experiments are reported herein. In particular, spherical-wave beamforming is investigated using 15 and 165 kHz pulse signals in a 1.07-m-diameter water tank with a linear array having 14 elements spaced 5.08 cm apart. Here, frequency-difference beamforming using the high-frequency pulses provides comparable results to conventional beamforming at 15 kHz. Plane-wave beamforming is investigated using 11.2-32.8 kHz frequency-sweep signals broadcast 3 km through a 106-m-deep ocean sound channel to a vertical array having 16 elements spaced 3.75 m apart. Here, frequency difference beamforming in the 1.7-2.3 kHz difference frequency band provides results comparable to conventional beamforming in this band.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.