Synthesis, biological evaluation and quantitative structure-active relationships of 1,3-thiazolidin-4-one derivatives. A promising chemical scaffold endowed with high antifungal potency and low cytotoxicity

Eur J Med Chem. 2017 Nov 10:140:274-292. doi: 10.1016/j.ejmech.2017.09.026. Epub 2017 Sep 19.

Abstract

With reference to recent studies reporting on the various biological properties of the thiazolidinone scaffold, we synthesized more than a hundred compounds characterized by a 1,3-thiazolidin-4-one nucleus derivatised at the C2 with a hydrazine bridge linked to (cyclo)aliphatic or hetero(aryl) moieties, and their N-benzylated derivatives. These molecules were assayed as potential anti-Candida agents and they were shown to possess comparable, and in some cases higher biological activity than well-established topical and systemic antimycotic drugs (i.e. clotrimazole, fluconazole, ketoconazole, miconazole, tioconazole, amphotericin B). Compounds endowed with the lowest MICs underwent further testing in order to assess their cytotoxic effect (CC50) on Hep2 cells, which demonstrated their relative safety. Finally, QSAR and 3-D QSAR models were used to predict putative chemical modifications of the 1,3-thiazolidin-4-one scaffold in order to design new and potential more active compounds against Candida spp.

Keywords: 3-D QSAR; Antifungal activity; Candida spp.; Cytotoxicity; Thiazolidinone.

MeSH terms

  • Antifungal Agents / chemical synthesis*
  • Antifungal Agents / chemistry
  • Antifungal Agents / pharmacology*
  • Candida / drug effects
  • Carbon-13 Magnetic Resonance Spectroscopy
  • Drug Screening Assays, Antitumor
  • Gram-Negative Bacteria / drug effects
  • Gram-Positive Bacteria / drug effects
  • Hep G2 Cells
  • Humans
  • Microbial Sensitivity Tests
  • Proton Magnetic Resonance Spectroscopy
  • Quantitative Structure-Activity Relationship
  • Thiazolidines / chemical synthesis*
  • Thiazolidines / chemistry
  • Thiazolidines / pharmacology*

Substances

  • Antifungal Agents
  • Thiazolidines