Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty

PLoS One. 2017 Sep 29;12(9):e0185454. doi: 10.1371/journal.pone.0185454. eCollection 2017.

Abstract

Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications.

MeSH terms

  • Electric Power Supplies*
  • Fuzzy Logic
  • Models, Theoretical
  • Stochastic Processes*
  • Uncertainty*
  • Wind*

Grants and funding

This work is supported by the National natural fund (no. 61503199), the National natural science key fund (no. 61533010), the Jiangsu Province natural science fund (no. BK20150853), the Jiangsu Province high school natural science fund (no. 15KJB120009), the Ph.D. Programs Foundation of the Ministry of Education of China (no. 20110142110036), NUPTSF (no. NY214206), and the Open Fund (grant no. XJKY14019).