Fluorescence Resonance Energy Transfer Systems in Supramolecular Macrocyclic Chemistry

Molecules. 2017 Sep 29;22(10):1640. doi: 10.3390/molecules22101640.

Abstract

The fabrication of smart materials is gradually becoming a research focus in nanotechnology and materials science. An important criterion of smart materials is the capacity of stimuli-responsiveness, while another lies in selective recognition. Accordingly, supramolecular host-guest chemistry has proven a promising support for building intelligent, responsive systems; hence, synthetic macrocyclic hosts, such as calixarenes, cucurbiturils, cyclodextrins, and pillararenes, have been used as ideal building blocks. Meanwhile, manipulating and harnessing light artificially is always an intensive attempt for scientists in order to meet the urgent demands of technological developments. Fluorescence resonance energy transfer (FRET), known as a well-studied luminescent activity and also a powerful tool in spectroscopic area, has been investigated from various facets, of which the application range has been broadly expanded. In this review, the innovative collaboration between FRET and supramolecular macrocyclic chemistry will be presented and depicted with typical examples. Facilitated by the dynamic features of supramolecular macrocyclic motifs, a large variety of FRET systems have been designed and organized, resulting in promising optical materials with potential for applications in protein assembly, enzyme assays, diagnosis, drug delivery monitoring, sensing, photosynthesis mimicking and chemical encryption.

Keywords: calixarene; cucurbituril; cyclodextrin; host-guest chemistry; pillararene; supramolecular chemistry.

Publication types

  • Review

MeSH terms

  • Biosensing Techniques
  • Chemical Phenomena*
  • Drug Delivery Systems
  • Fluorescence Resonance Energy Transfer* / methods
  • Macrocyclic Compounds / chemistry*
  • Models, Chemical*
  • Molecular Structure
  • Nanomedicine
  • Nanoparticles / chemistry
  • Nanotechnology

Substances

  • Macrocyclic Compounds