A systematic tandem mass spectrometric study of anion attachment for improved detection and acidity evaluation of nitrogen-rich energetic compounds

J Mass Spectrom. 2018 Jan;53(1):21-29. doi: 10.1002/jms.4034.

Abstract

The development of rapid, efficient, and reliable detection methods for the characterization of energetic compounds is of high importance to security forces concerned with terrorist threats. With a mass spectrometric approach, characteristic ions can be produced by attaching anions to analyte molecules in the negative ion mode of electrospray ionization mass spectrometry (ESI-MS). Under optimized conditions, formed anionic adducts can be detected with higher sensitivities as compared with the deprotonated molecules. Fundamental aspects pertaining to the formation of anionic adducts of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), 1,3,5-trinitro-1,3,5-triazinane (RDX), pentaerythritol tetranitrate (PETN), nitroglycerin (NG), and 1,3,5-trinitroso-1,3,5-triazinane energetic (R-salt) compounds using various anions have been systematically studied by ESI-MS and ESI tandem mass spectrometry (collision-induced dissociation) experiments. Bracketing method results show that the gas-phase acidities of PETN, RDX, and HMX fall between those of HF and acetic acid. Moreover, PETN and RDX are each less acidic than HMX in the gas phase. Nitroglycerin was found to be the most acidic among the nitrogen-rich explosives studied. The ensemble of bracketing results allows the construction of the following ranking of gas-phase acidities: PETN (1530-1458 kJ/mol) > RDX (approximately 1458 kJ/mol) > HMX (approximately 1433 kJ/mol) > nitroglycerin (1427-1327.8 kJ/mol).

Keywords: anion attachment; bracketing; energetic materials; explosives; gas-phase acidity.