Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China

Sci Total Environ. 2018 Feb 1:613-614:958-968. doi: 10.1016/j.scitotenv.2017.09.182. Epub 2017 Sep 26.

Abstract

Less is known about controls of sedimentary structures in groundwater As distributions in sedimentary aquifers, and quantitative description of relationship between sedimentary environment and high As groundwater (according to WHO, As>10μg/L) is a challenging issue. Three hundred and eighty-two hydrogeological borehole loggings (well depths of 50-300m) were collected and four hundred and ninety nine groundwater samples were taken to investigate controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin. Results showed that the swing zone, formed by bursting, diversion and swing of ancient Yellow River course since the Late Pleistocene, has an obviously corresponding relationship with spatial variability of groundwater As in the Hetao Basin. "Swing Intensity Index" (S), which is firstly defined as the sum of clay-sand ratio (R) and the number of clay layers (N), can be used as the sedimentary facies symbol to establish the new recognition method for hosting high As groundwater. There is a positive correlation between the swing intensity index (S) of paleochannels and groundwater As concentrations. The swing zones of paleochannels with high S values represent hydrogeochemical characteristics of the strong reducing environment, serious evaporation, strong cation exchange, and the low infiltration recharge of surface water, which lead to enrichment of groundwater As in the shallow aquifers.

Keywords: High As groundwater; Hydrogeochemical process; Sedimentary facies; Swing intensity index of paleochannels.